MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/73

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	73

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √* implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	73

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4 Mark Scheme Syllabus					Syllabus	Paper	
		GCE A LEVEL – I	GCE A LEVEL – May/June 2014			9709	73
	1		1		r		
1	$e^{-4}(1 + 4)$	4)	M1 M1			1) using Poisson, correct form corre rror)	
	= 0.091	6 (3 s.f.)	A1	[3]	SR Use of Bin(100000, 1/25000) scores M1 for P(0,1) allow one end error. A1 0.0916		
2	$ht = \frac{1}{2}$	seen	B1		or $y = \frac{1}{8}x$		
	$\frac{1}{2} \times m$	$\left(\frac{m}{4}\times"\frac{1}{2}"\right) = \frac{1}{2}$	M1		$\frac{1}{2} \times m \times ("\frac{1}{8}"m$	$(n) = \frac{1}{2}$ or $\frac{m^2}{16}$	$=\frac{1}{2}$ o.e.
	N.B. B 1	l M1 must be consistent				linear function of nd <i>m</i> or <i>m</i> and 4 a	
	$m = \sqrt{8}$	or 2√2 or 2.83 (3 s.f.)	A1	[3]			
3	<i>p</i> = 0.56	5	B1		Used		
	'0.56' ±	$= z \times \sqrt{\frac{0.56 \times 0.44}{100}}$	M1		Equation of co Must be <i>z</i>	rrect form condon	ejust+veor-ve
	z = 2.17	7, or 2.169 or 2.171	B1				
	0.452 to	0.668 (3 s.f.)	A1	[4]	Seen Must be an inte	erval	
4	$\overline{x} = 1.6$	55	B1				
	$est(\sigma^2)$	$=\frac{100}{99}\left(\frac{276.25}{100}-1.65^{2}\right)$	B1				
	= 0.040	404 = 4/99					
	$(\pm)\frac{1.0}{\sqrt{\underline{"0}}}$	<u>65–1.6</u> .040404" 100	M1		Without $\frac{100}{99}$:	$\frac{1.65 - 1}{\sqrt{\frac{"0.04}{100}}}$	<u>.6</u> B1 B0 M1
		487/2.488 accept 2.49 Or 0.0064 if area comparison	A1			= 2.50	A1
					CV Method M 1.6106	1 must use 1.96 A	1 for 1.639 or
	comp w	vith 1.96	M1		For valid comp area/area cv)	parison (z/z Signs	consistent or
	There is	s evidence that μ is not 1.6	A1√	[6]	Accept Reject	H ₀ No contradicti	ions

Page 5		Mark Sc	Syllabus	Paper			
		GCE A LEVEL – N	/lay/Ju	une 2	2014	9709	73
5 (i)	Longes	st lifetime	B1	[1]	Must be in context		
(ii)	$\int_{1}^{a} \frac{k}{x^2} \mathrm{d}x$	c = 1	M1		Int $f(x)$ and equate to 1. Ignore limits		
	$k\left[-\frac{1}{x}\right]$	a = 1	A1		Correct integral and limits		
	$\left(k\left[-\frac{1}{a}\right]\right)$	+1 = 1					
	$k\left[\frac{-1+a}{a}\right]$	$\left[\frac{a}{a}\right] = 1 \text{or } k(-1+a) = a$					
	$k = \frac{a}{a}$	$\frac{d}{-1}$ AG	A1	[3]	Must be convir	nced (AG)	
(iii)	$\frac{5}{3} \stackrel{2.5}{\stackrel{1}{_{-1}}}$	$\frac{1}{x}$ dx or $k \int_{1}^{2.5} \frac{1}{x}$ dx	M1		Int $xf(x)$. Ignor	e limits	
	$=\frac{5}{3}$ [1]	$nx \Big] {\begin{array}{*{20}c} 2.5 \\ 1 \end{array}} \text{or } k[lnx] \Big] {\begin{array}{*{20}c} 2.5 \\ 1 \end{array}}$	A1		Correct integral and limits (Accept "k" or "their k")		
	$=\frac{5}{3}\ln^2$	2.5 or 1.53 (3 s.f.)	A1	[3]			
6 (i)	H ₀ : <i>p</i> = H ₁ : <i>p</i> <		B1		(Allow π)		
	P(0 or	1 5s in 25 H ₀)	M1			$8^{24} \times 0.2$ Use of B(both – may be implied by both – may both – may both – may both – may by both – may both – may b	
	$= 0.02^{2}$	74 (3 s.f.)	A1		0.0271		
	Comp	with 0.025	M1		Valid comparison		
	No evi suppor	dence (at 2.5% level) to t claim	A1√	[5]	No contradictions SR Use of Normal N(5,4) leading to $z = 1.75$ or 0.0401 B1* H ₀ $\mu = 5$ H ₁ $\mu < 5$ B1. Comparison 1.75 < 1.96 or 0.0401 > 0.025 B1* dep		
(ii)	Norma	1	B1				
	$\mu = 200$	0, $\sigma^2 = 160 \text{ or } \sigma = \sqrt{160}$	B1	[2]			
(iii)	produc	iding that the machine es the right proportion of 5s, gh it doesn't.	B1	[1]	Not concluding that the machine produces too few 5s although it does. Must be in context o.e. No contradictions		

Page	9 6	Mark Sc				Syllabus	Paper
		GCE A LEVEL – I	9709	73			
7 (i)	Constan	t mean (or average) rate	B1	[1]	Constant mean	per day (or week,	etc.) o.e.
(ii)	$e^{-\frac{4}{7}} \times \frac{\frac{4}{7}}{2}$	$\frac{1}{2!}$ or $e^{-0.571} \times \frac{0.571^2}{2!}$	M1		Expression for	P(2) allow any λ	
	= 0.0922	2 or 0.0921 (3 s.f.)	A1	[2]			
(iii)	$\lambda = \frac{40}{7}$	or 5.71	B1				
	$1 - e^{-\frac{4i}{7}}$	$\frac{9}{2}\left(1+\frac{40}{7}+\frac{\frac{40}{7}^{2}}{2!}+\frac{\frac{40}{7}^{3}}{3!}\right)$	M1		Allow any λ allow one end error		
	= 0.821	(3 s.f.)	A1	[3]			
(iv)	$\frac{24}{7}$ o.e	. 3 s.f. or better seen	B1				
	$e^{-\frac{4}{7}} \times e^{-\frac{4}{7}}$	$-\frac{24}{7} \times \frac{\frac{24}{7}}{5!}^{5}$	M1		M1 for P(0) × 1	P(5) any consisten	tλ
	= 0.072	3 (3 s.f.)	A1	[3]			
8 (i)	X+2.51	Y∼N(127, 44.25)	B1 B1		B1 for 44.25 or	stage $(13 + 2.5^2 \times$	
	$(\pm)\frac{140}{\sqrt{4}}$	<u>-"127"</u> 4.25"	M1		For standardisi	ng	
	= ±(1.9	54)	M1		For area consistent with their working		king
	$1 - \Phi(")$	1.954")					
	= 0.0254	4/0.0253 (3 s.f.)	A1	[5]			
(ii)	X-Y~	N(29, 18)	B1 B1			e at early stage (57 at early stage (13 d by next line	
	$\frac{20 - "29}{\sqrt{"18"}}$	- (2.121)	M1		For Standardis	ing	
	1 – Φ ("-	-2.121") = Φ("2.121")	M1		For area consis	tent with their wor	king
	= 0.983	(3 s.f.)	A1	[5]			